概述
LinkedList也和ArrayList一样实现了List接口,但是它执行插入和删除操作时比ArrayList更加高效,因为它是基于链表的。基于链表也决定了它在随机访问方面要比ArrayList逊色一点。
除此之外,LinkedList还提供了一些可以使其作为栈、队列、双端队列的方法。这些方法中有些彼此之间只是名称的区别,以使得这些名字在特定的上下文中显得更加的合适。
先看LinkedList类的定义。
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
LinkedList继承自AbstractSequenceList、实现了List及Deque接口。其实AbstractSequenceList已经实现了List接口,这里标注出List只是更加清晰而已。AbstractSequenceList提供了List接口骨干性的实现以减少实现List接口的复杂度。Deque接口定义了双端队列的操作。
LinkedList中之定义了两个属性:
private transient Entry<E> header = new Entry<E>(null, null, null);
private transient int size = 0;
size肯定就是LinkedList对象里面存储的元素个数了。LinkedList既然是基于链表实现的,那么这个header肯定就是链表的头结点了,Entry就是节点对象了。一下是Entry类的代码。
private static class Entry<E> {
E item;
Entry<E> next;
Entry<E> prev;
Entry(Entry<E> prev, E element, Entry<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
只定义了存储的元素、前一个元素、后一个元素,这就是双向链表的节点的定义,每个节点只知道自己的前一个节点和后一个节点。
构造函数
来看LinkedList的构造方法
public LinkedList() {
header.next = header.previous = header;
}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
LinkedList提供了两个构造方法。第一个构造方法不接受参数,只是将header节点的前一节点和后一节点都设置为自身(注意,这个是一个双向循环链表,如果不是循环链表,空链表的情况应该是header节点的前一节点和后一节点均为null),这样整个链表其实就只有header一个节点,用于表示一个空的链表。第二个构造方法接收一个Collection参数c,调用第一个构造方法构造一个空的链表,之后通过addAll将c中的元素全部添加到链表中。来看addAll的内容。
ArrayList的属性
ArrayList定义只定义类两个私有属性:
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer.
*/
private transient Object[] elementData;
/**
* The size of the ArrayList (the number of elements it contains).
*
* @serial
*/
private int size;
很容易理解,elementData存储ArrayList内的元素,size表示它包含的元素的数量。
有个关键字需要解释:transient。
Java的serialization提供了一种持久化对象实例的机制。当持久化对象时,可能有一个特殊的对象数据成员,我们不想用serialization机制来保存它。为了在一个特定对象的一个域上关闭serialization,可以在这个域前加上关键字transient。
ansient是Java语言的关键字,用来表示一个域不是该对象串行化的一部分。当一个对象被串行化的时候,transient型变量的值不包括在串行化的表示中,然而非transient型的变量是被包括进去的。
有点抽象,看个例子应该能明白。
public class UserInfo implements Serializable {
private static final long serialVersionUID = 996890129747019948L;
private String name;
private transient String psw;
public UserInfo(String name, String psw) {
this.name = name;
this.psw = psw;
}
public String toString() {
return "name=" + name + ", psw=" + psw;
}
}
public class TestTransient {
public static void main(String[] args) {
UserInfo userInfo = new UserInfo("张三", "123456");
System.out.println(userInfo);
try {
// 序列化,被设置为transient的属性没有被序列化
ObjectOutputStream o = new ObjectOutputStream(new FileOutputStream(
"UserInfo.out"));
o.writeObject(userInfo);
o.close();
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}
try {
// 重新读取内容
ObjectInputStream in = new ObjectInputStream(new FileInputStream(
"UserInfo.out"));
UserInfo readUserInfo = (UserInfo) in.readObject();
//读取后psw的内容为null
System.out.println(readUserInfo.toString());
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}
}
}
被标记为transient的属性在对象被序列化的时候不会被保存。
ArrayList的构造方法
/**
* Constructs an empty list with the specified initial capacity.
*/
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
}
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
this(10);
}
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*/
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
}
第一个构造方法使用提供的initialCapacity来初始化elementData数组的大小。第二个构造方法调用第一个构造方法并传入参数10,即默认elementData数组的大小为10。第三个构造方法则将提供的集合转成数组返回给elementData(返回若不是Object[]将调用Arrays.copyOf方法将其转为Object[])。
ArrayList的其他方法
add(E e)
add(E e)都知道是在尾部添加一个元素,如何实现的呢?
public boolean add(E e) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
书上都说ArrayList是基于数组实现的,属性中也看到了数组,具体是怎么实现的呢?比如就这个添加元素的方法,如果数组大,则在将某个位置的值设置为指定元素即可,如果数组容量不够了呢?
看到add(E e)中先调用了ensureCapacity(size+1)方法,之后将元素的索引赋给elementData[size],而后size自增。例如初次添加时,size为0,add将elementData[0]赋值为e,然后size设置为1(类似执行以下两条语句elementData[0]=e;size=1)。将元素的索引赋给elementData[size]不是会出现数组越界的情况吗?这里关键就在ensureCapacity(size+1)中了。
根据ensureCapacity的方法名可以知道是确保容量用的。ensureCapacity(size+1)后面的注释可以明白是增加modCount的值(加了俩感叹号,应该蛮重要的,来看看)。
/**
* Increases the capacity of this <tt>ArrayList</tt> instance, if
* necessary, to ensure that it can hold at least the number of elements
* specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
The number of times this list has been structurally modified.
这是对modCount的解释,意为记录list结构被改变的次数(观察源码可以发现每次调用ensureCapacoty方法,modCount的值都将增加,但未必数组结构会改变,所以感觉对modCount的解释不是很到位)。
增加modCount之后,判断minCapacity(即size+1)是否大于oldCapacity(即elementData.length),若大于,则调整容量为max((oldCapacity*3)/2+1,minCapacity),调整elementData容量为新的容量,即将返回一个内容为原数组元素,大小为新容量的数组赋给elementData;否则不做操作。
所以调用ensureCapacity至少将elementData的容量增加的1,所以elementData[size]不会出现越界的情况。
容量的拓展将导致数组元素的复制,多次拓展容量将执行多次整个数组内容的复制。若提前能大致判断list的长度,调用ensureCapacity调整容量,将有效的提高运行速度。
可以理解提前分配好空间可以提高运行速度,但是测试发现提高的并不是很大,而且若list原本数据量就不会很大效果将更不明显。
Add方法
add(int index, E element)
add(int index,E element)在指定位置插入元素。
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
ensureCapacity(size+1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
首先判断指定位置index是否超出elementData的界限,之后调用ensureCapacity调整容量(若容量足够则不会拓展),调用System.arraycopy将elementData从index开始的size-index个元素复制到index+1至size+1的位置(即index开始的元素都向后移动一个位置),然后将index位置的值指向element。
addAll(Collection<? extends E> c)
public boolean addAll(int index, Collection<? extends E> c) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: " + index + ", Size: " + size);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacity(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
先判断index是否越界。其他内容与addAll(Collection<? extends E> c)基本一致,只是复制的时候先将index开始的元素向后移动X(c转为数组后的长度)个位置(也是一个复制的过程),之后将数组内容复制到elementData的index位置至index+X。
Clear方法
public void clear() {
modCount++;
// Let gc do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
clear的时候并没有修改elementData的长度(好不容易申请、拓展来的,凭什么释放,留着搞不好还有用呢。这使得确定不再修改list内容之后最好调用trimToSize来释放掉一些空间),只是将所有元素置为null,size设置为0。
clone()
返回此 ArrayList 实例的浅表副本。(不复制这些元素本身。)
public Object clone() {
try {
ArrayList<E> v = (ArrayList<E>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
调用父类的clone方法返回一个对象的副本,将返回对象的elementData数组的内容赋值为原对象elementData数组的内容,将副本的modCount设置为0。
contains(Object)
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
indexOf方法返回值与0比较来判断对象是否在list中。接着看indexOf。
indexOf(Object)
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
通过遍历elementData数组来判断对象是否在list中,若存在,返回index([0,size-1]),若不存在则返回-1。所以contains方法可以通过indexOf(Object)方法的返回值来判断对象是否被包含在list中。
既然看了indexOf(Object)方法,接着就看lastIndexOf,光看名字应该就明白了返回的是传入对象在elementData数组中最后出现的index值。
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
采用了从后向前遍历element数组,若遇到Object则返回index值,若没有遇到,返回-1。
get(int index)
public E get(int index) {
RangeCheck(index);
return (E) elementData[index];
}
但看代码的时候看到调用了RangeCheck方法,而且还是大写的方法,看看究竟有什么内容吧。
/**
* Checks if the given index is in range.
*/
private void RangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
}
isEmpty()
直接返回size是否等于0。
remove(int index)
public E remove(int index) {
RangeCheck(index);
modCount++;
E oldValue = (E) elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
首先是检查范围,修改modCount,保留将要被移除的元素,将移除位置之后的元素向前挪动一个位置,将list末尾元素置空(null),返回被移除的元素。
remove(Object o)
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
首先通过代码可以看到,当移除成功后返回true,否则返回false。remove(Object o)中通过遍历element寻找是否存在传入对象,一旦找到就调用fastRemove移除对象。为什么找到了元素就知道了index,不通过remove(index)来移除元素呢?因为fastRemove跳过了判断边界的处理,因为找到元素就相当于确定了index不会超过边界,而且fastRemove并不返回被移除的元素。下面是fastRemove的代码,基本和remove(index)一致。
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
}
removeRange(int fromIndex,int toIndex)
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newSize = size - (toIndex-fromIndex);
while (size != newSize)
elementData[--size] = null;
}
执行过程是将elementData从toIndex位置开始的元素向前移动到fromIndex,然后将toIndex位置之后的元素全部置空顺便修改size。
这个方法是protected,及受保护的方法,为什么这个方法被定义为protected呢?
这是一个解释,但是可能不容易看明白。http://stackoverflow.com/questions/2289183/why-is-javas-abstractlists-removerange-method-protected
先看下面这个例子
ArrayList<Integer> ints = new ArrayList<Integer>(Arrays.asList(0, 1, 2,
3, 4, 5, 6));
// fromIndex low endpoint (inclusive) of the subList
// toIndex high endpoint (exclusive) of the subList
ints.subList(2, 4).clear();
System.out.println(ints);
输出结果是[0, 1, 4, 5, 6],结果是不是像调用了removeRange(int fromIndex,int toIndex)!哈哈哈,就是这样的。但是为什么效果相同呢?是不是调用了removeRange(int fromIndex,int toIndex)呢?
set(int index,E element)
public E set(int index, E element) {
RangeCheck(index);
E oldValue = (E) elementData[index];
elementData[index] = element;
return oldValue;
} 首先检查范围,用新元素替换旧元素并返回旧元素。
toArray()
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
调用Arrays.copyOf将返回一个数组,数组内容是size个elementData的元素,即拷贝elementData从0至size-1位置的元素到新数组并返回。
toArray(T[] a)
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
trimToSize()
public void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (size < oldCapacity) {
elementData = Arrays.copyOf(elementData, size);
}
}
由于elementData的长度会被拓展,size标记的是其中包含的元素的个数。所以会出现size很小但elementData.length很大的情况,将出现空间的浪费。trimToSize将返回一个新的数组给elementData,元素内容保持不变,length很size相同,节省空间。
学习Java最好的方式还必须是读源码。读完源码你才会发现这东西为什么是这么玩的,有哪些限制,关键点在哪里等等。而且这些源码都是大牛们写的,你能从中学习到很多
参考
http://blog.csdn.net/jzhf2012/article/details/8540410