Binder系列3—启动ServiceManager

Posted by JackPeng on November 7, 2015

基于Android 6.0的源码剖析, 本文详细地讲解了ServiceManager启动流程

/framework/native/cmds/servicemanager/service_manager.c
/framework/native/cmds/servicemanager/binder.c

入口

ServiceManager是整个Binder IPC通信过程中的守护进程,本身也是一个Binder服务,但并没有采用libbinder中的多线程模型来与Binder驱动通信,而是自行编写了binder.c直接和Binder驱动来通信,并且只有一个循环binder_loop来进行读取和处理事务,这样的好处是简单而高效。 这也跟ServiceManager本身工作相对并不复杂,主要就两个工作:查询和注册服务。 对于Binder IPC通信过程中,其实更多的情形是BpBinder和BBinder之间的通信,比如ActivityManager和ActivityManagerService有大量的通信。

启动Service Manager的入口函数是service_manager.c中的main()方法,代码如下:

==> /framework/native/cmds/servicemanager/service_manager.c

int main(int argc, char **argv)
{
    struct binder_state *bs;
    //打开binder驱动,申请128k大小的内存空间 【见流程1】
    bs = binder_open(128*1024);
    if (!bs) {
        return -1;
    }

    //成为上下文管理者 【见流程2】
    if (binder_become_context_manager(bs)) {  
        return -1;
    }

    selinux_enabled = is_selinux_enabled(); //判断selinux权限问题
    sehandle = selinux_android_service_context_handle();
    selinux_status_open(true);

    if (selinux_enabled > 0) {
        if (sehandle == NULL) {  //无法获取sehandle
            abort();
        }

        if (getcon(&service_manager_context) != 0) { //无法获取service_manager上下文
            abort();
        }
    }

    union selinux_callback cb;
    cb.func_audit = audit_callback;
    selinux_set_callback(SELINUX_CB_AUDIT, cb);
    cb.func_log = selinux_log_callback;
    selinux_set_callback(SELINUX_CB_LOG, cb);

    //进入无限循环,处理client端发来的请求 【见流程5】
    binder_loop(bs, svcmgr_handler); 

    return 0;
}

该过程的时序图如下:

create_servicemanager

1. binder_open

==> /framework/native/cmds/servicemanager/binder.c

打开binder驱动相关操作

struct binder_state *binder_open(size_t mapsize)
{
    struct binder_state *bs;
    struct binder_version vers;

    bs = malloc(sizeof(*bs));
    if (!bs) {
        errno = ENOMEM;
        return NULL;
    }

    //通过系统调用陷入内核,打开Binder设备驱动
    bs->fd = open("/dev/binder", O_RDWR);  
    if (bs->fd < 0) {   
        goto fail_open; // 无法打开binder设备
    }

     //通过系统调用,ioctl获取binder版本信息
    if ((ioctl(bs->fd, BINDER_VERSION, &vers) == -1) ||
        (vers.protocol_version != BINDER_CURRENT_PROTOCOL_VERSION)) {  
        goto fail_open; //内核空间与用户空间的binder不是同一版本
    }

    bs->mapsize = mapsize;
    //通过系统调用,mmap内存映射
    bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0); 
    if (bs->mapped == MAP_FAILED) { 
        goto fail_map; // binder设备内存无法映射
    }

    return bs;

fail_map:
    close(bs->fd);
fail_open:
    free(bs);
    return NULL;
}

先调用open()打开binder设备,open()方法经过系统调用,进入Binder驱动,然后调用方法binder_open(),该方法会在Binder驱动层创建一个binder_proc对象,再将binder_proc对象赋值给fd->private_data,同时放入全局链表binder_procs。再通过ioctl()检验当前binder版本与Binder驱动层的版本是否一致。

调用mmap()进行内存映射,同理mmap()方法经过系统调用,对应于Binder驱动层的binder_mmap()方法,该方法会在Binder驱动层创建Binder_buffer对象,并放入当前binder_proc的proc->buffers链表。

2. binder_become_context_manager

==> /framework/native/cmds/servicemanager/binder.c

成为上下文的管理者,整个系统中只有一个这样的管理者。

int binder_become_context_manager(struct binder_state *bs)
{
    //通过ioctl,传递BINDER_SET_CONTEXT_MGR指令。再调用【流程3】
    return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}

通过ioctl()方法经过系统调用,对应于Binder驱动层的binder_ioctl()方法,根据参数BINDER_SET_CONTEXT_MGR,最终调用binder_ioctl_set_ctx_mgr()方法。

3. binder_ioctl_set_ctx_mgr

==> kernel/drivers/android/binder.c

该方法位于binder驱动。

static int binder_ioctl_set_ctx_mgr(struct file *filp)
{
	int ret = 0;
	struct binder_proc *proc = filp->private_data;
	kuid_t curr_euid = current_euid();

	if (binder_context_mgr_node != NULL) {
		ret = -EBUSY;
		goto out;
	}

	if (uid_valid(binder_context_mgr_uid)) {
		if (!uid_eq(binder_context_mgr_uid, curr_euid)) {
			ret = -EPERM;
			goto out;
		}
	} else {
		binder_context_mgr_uid = curr_euid; //设置当前线程euid作为Service Manager的uid
	}

    //创建ServiceManager实体【流程4】
	binder_context_mgr_node = binder_new_node(proc, 0, 0); 
	if (binder_context_mgr_node == NULL) {
		ret = -ENOMEM;
		goto out;
	}
	binder_context_mgr_node->local_weak_refs++;
	binder_context_mgr_node->local_strong_refs++;
	binder_context_mgr_node->has_strong_ref = 1;
	binder_context_mgr_node->has_weak_ref = 1;
out:
	return ret;
}

在Binder驱动中定义的静态变量

// service manager所对应的binder_node;
static struct binder_node *binder_context_mgr_node; 
// 运行service manager的线程uid
static kuid_t binder_context_mgr_uid = INVALID_UID; 

通过binder_new_node()创建了全局的binder_context_mgr_node对象,并且增加binder_context_mgr_node的强弱引用各自加1.

4. binder_new_node

==> kernel/drivers/android/binder.c

该方法位于binder驱动。

static struct binder_node *binder_new_node(struct binder_proc *proc,
					   binder_uintptr_t ptr,
					   binder_uintptr_t cookie)
{
	struct rb_node **p = &proc->nodes.rb_node; 
	struct rb_node *parent = NULL;
	struct binder_node *node;
	//首次进来为空
	while (*p) {
		parent = *p;
		node = rb_entry(parent, struct binder_node, rb_node);

		if (ptr < node->ptr)
			p = &(*p)->rb_left;
		else if (ptr > node->ptr)
			p = &(*p)->rb_right;
		else
			return NULL;
	}
	//给新创建的binder_node 分配内核空间
	node = kzalloc(sizeof(*node), GFP_KERNEL);
	if (node == NULL)
		return NULL;
	binder_stats_created(BINDER_STAT_NODE);
	// 将新创建的node对象添加到proc红黑树;
	rb_link_node(&node->rb_node, parent, p);
	rb_insert_color(&node->rb_node, &proc->nodes);
	node->debug_id = ++binder_last_id;
	node->proc = proc;
	node->ptr = ptr;
	node->cookie = cookie;
	node->work.type = BINDER_WORK_NODE; //设置binder_work的type
	INIT_LIST_HEAD(&node->work.entry);
	INIT_LIST_HEAD(&node->async_todo);
	return node;
}

在Binder驱动层创建binder_node结构体对象,并将当前binder_proc加入到binder_nodenode->proc。并创建binder_node的async_todo和binder_work两个队列。

5. binder_loop

==> /framework/native/cmds/servicemanager/binder.c

进入循环读写操作,由main()方法传递过来的参数func指向svcmgr_handler。

void binder_loop(struct binder_state *bs, binder_handler func)
{
    int res;
    struct binder_write_read bwr;
    uint32_t readbuf[32];

    bwr.write_size = 0;
    bwr.write_consumed = 0;
    bwr.write_buffer = 0;

    readbuf[0] = BC_ENTER_LOOPER;
    //将BC_ENTER_LOOPER命令发送给binder驱动,让Service Manager进入循环 【流程6】
    binder_write(bs, readbuf, sizeof(uint32_t)); 

    for (;;) {
        bwr.read_size = sizeof(readbuf);
        bwr.read_consumed = 0;
        bwr.read_buffer = (uintptr_t) readbuf;

        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); //进入循环,不断地binder读写过程
        if (res < 0) {
            break;
        }

        // 解析binder信息 【流程7】
        res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
        if (res == 0) {
            break;
        }
        if (res < 0) {
            break;
        }
    }
}

binder_write通过ioctl()将BC_ENTER_LOOPER命令发送给binder驱动,此时bwr只有write_buffer有数据,进入binder_thread_write()方法。 接下来进入for循环,执行ioctl(),此时bwr只有read_buffer有数据,那么进入binder_thread_read()方法。

6. binder_write

==> /framework/native/cmds/servicemanager/binder.c

int binder_write(struct binder_state *bs, void *data, size_t len)
{
    struct binder_write_read bwr;
    int res;

    bwr.write_size = len;
    bwr.write_consumed = 0;
    bwr.write_buffer = (uintptr_t) data; //此处data为BC_ENTER_LOOPER
    bwr.read_size = 0;
    bwr.read_consumed = 0;
    bwr.read_buffer = 0;
    res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);

    return res;
}

根据传递进来的参数,初始化bwr,其中write_size大小为4,write_buffer指向缓冲区的起始地址,其内容为BC_ENTER_LOOPER请求协议号。通过ioctl将bwr数据发送给binder驱动,让Service Manager进入循环。

7. binder_parse

==> /framework/native/cmds/servicemanager/binder.c

解析binder信息,此处参数ptr指向BC_ENTER_LOOPER,func指向svcmgr_handler。

int binder_parse(struct binder_state *bs, struct binder_io *bio,
                 uintptr_t ptr, size_t size, binder_handler func)
{
    int r = 1;
    uintptr_t end = ptr + (uintptr_t) size;

    while (ptr < end) {
        uint32_t cmd = *(uint32_t *) ptr;
        ptr += sizeof(uint32_t);
        switch(cmd) {
        case BR_NOOP:  //无操作,退出循环
            break;
        case BR_TRANSACTION_COMPLETE:
            break;
        case BR_INCREFS:
        case BR_ACQUIRE:
        case BR_RELEASE:
        case BR_DECREFS:
            ptr += sizeof(struct binder_ptr_cookie);
            break;
        case BR_TRANSACTION: {
            struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
            if ((end - ptr) < sizeof(*txn)) {
                ALOGE("parse: txn too small!\n");
                return -1;
            }
            binder_dump_txn(txn);
            if (func) {
                unsigned rdata[256/4];
                struct binder_io msg;
                struct binder_io reply;
                int res;

                bio_init(&reply, rdata, sizeof(rdata), 4);
                bio_init_from_txn(&msg, txn);
                 // 收到Binder事务 【见流程8】
                res = func(bs, txn, &msg, &reply);
                binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
            }
            ptr += sizeof(*txn);
            break;
        }
        case BR_REPLY: {
            struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
            if ((end - ptr) < sizeof(*txn)) {
                ALOGE("parse: reply too small!\n");
                return -1;
            }
            binder_dump_txn(txn);
            if (bio) {
                bio_init_from_txn(bio, txn);
                bio = 0;
            } else {
                /* todo FREE BUFFER */
            }
            ptr += sizeof(*txn);
            r = 0;
            break;
        }
        case BR_DEAD_BINDER: {
            struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
            ptr += sizeof(binder_uintptr_t);
            // binder死亡消息【见流程8】
            death->func(bs, death->ptr); 
            break;
        }
        case BR_FAILED_REPLY:
            r = -1;
            break;
        case BR_DEAD_REPLY:
            r = -1;
            break;
        default:
            return -1;
        }
    }
    return r;
} 

接受到的请求最终调用svcmgr_handler。

8. svcmgr_handler

==> /framework/native/cmds/servicemanager/service_manager.c

serviceManager操作的真正处理函数

int svcmgr_handler(struct binder_state *bs,
                   struct binder_transaction_data *txn,
                   struct binder_io *msg,
                   struct binder_io *reply)
{
    struct svcinfo *si;
    uint16_t *s;
    size_t len;
    uint32_t handle;
    uint32_t strict_policy;
    int allow_isolated;
    //判断target是否是Service Manager
    if (txn->target.ptr != BINDER_SERVICE_MANAGER) 
        return -1;

    if (txn->code == PING_TRANSACTION)
        return 0;

    strict_policy = bio_get_uint32(msg);
    s = bio_get_string16(msg, &len);
    if (s == NULL) {
        return -1;
    }
    //svcmgr_id是由“android.os.IServiceManager”字符组成的。svcmgr_id与s的内存块的内容是否一致。
    if ((len != (sizeof(svcmgr_id) / 2)) ||
        memcmp(svcmgr_id, s, sizeof(svcmgr_id))) { 
        return -1;
    }

    if (sehandle && selinux_status_updated() > 0) {
        struct selabel_handle *tmp_sehandle = selinux_android_service_context_handle();
        if (tmp_sehandle) {
            selabel_close(sehandle);
            sehandle = tmp_sehandle;
        }
    }

    switch(txn->code) {
    case SVC_MGR_GET_SERVICE:  //对应于getService
    case SVC_MGR_CHECK_SERVICE:  //对应于checkService
        s = bio_get_string16(msg, &len);
        if (s == NULL) {
            return -1;
        }
        //根据名称查找相应服务 【见流程9】
        handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid); 
        if (!handle)
            break;
        bio_put_ref(reply, handle);
        return 0;

    case SVC_MGR_ADD_SERVICE:  //对应于addService
        s = bio_get_string16(msg, &len);
        if (s == NULL) {
            return -1;
        }
        handle = bio_get_ref(msg);
        allow_isolated = bio_get_uint32(msg) ? 1 : 0;
         //注册指定服务 【见流程10】
        if (do_add_service(bs, s, len, handle, txn->sender_euid,
            allow_isolated, txn->sender_pid))
            return -1;
        break;

    case SVC_MGR_LIST_SERVICES: {   // 对应于listService
        uint32_t n = bio_get_uint32(msg);

        if (!svc_can_list(txn->sender_pid)) {
            return -1;
        }
        si = svclist;
        while ((n-- > 0) && si)
            si = si->next;
        if (si) {
            bio_put_string16(reply, si->name);
            return 0;
        }
        return -1;
    }
    default:
        return -1;
    }

    bio_put_uint32(reply, 0);
    return 0;
}

9. do_add_service

==> /framework/native/cmds/servicemanager/service_manager.c

int do_add_service(struct binder_state *bs,
                   const uint16_t *s, size_t len,
                   uint32_t handle, uid_t uid, int allow_isolated,
                   pid_t spid)
{
    struct svcinfo *si;

    if (!handle || (len == 0) || (len > 127))
        return -1;

    //权限检查【见流程9.1】
    if (!svc_can_register(s, len, spid)) { 
        return -1;
    }

    //服务检索【见流程9.2】
    si = find_svc(s, len); 
    if (si) {
        if (si->handle) { 
            svcinfo_death(bs, si); //服务已注册时,释放相应的服务
        }
        si->handle = handle;
    } else {
        si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
        if (!si) {  //内存不足,无法分配足够内存
            return -1;
        }
        si->handle = handle;
        si->len = len;
        memcpy(si->name, s, (len + 1) * sizeof(uint16_t)); //内存拷贝服务信息
        si->name[len] = '\0';
        si->death.func = (void*) svcinfo_death;
        si->death.ptr = si;
        si->allow_isolated = allow_isolated;
        si->next = svclist; // svclist保存所有已注册的服务
        svclist = si;
    }

    //以BC_ACQUIRE命令,handle为目标的信息,通过ioctl发送给binder驱动
    binder_acquire(bs, handle); 
    //以BC_REQUEST_DEATH_NOTIFICATION命令的信息,通过ioctl发送给binder驱动,主要用于清理内存等收尾工作。
    binder_link_to_death(bs, handle, &si->death); 
    return 0;
}

9.1 检查权限

检查selinux权限是否满足,

static int svc_can_register(const uint16_t *name, size_t name_len, pid_t spid)
{
    const char *perm = "add";
    return check_mac_perms_from_lookup(spid, perm, str8(name, name_len)) ? 1 : 0;
}

9.2 查询服务

从svclist服务列表中,根据服务名遍历查找是否已经注册。当服务已存在svclist,则返回相应的服务名,否则返回NULL。

struct svcinfo *find_svc(const uint16_t *s16, size_t len)
{
    struct svcinfo *si;

    for (si = svclist; si; si = si->next) {
        if ((len == si->len) &&
            !memcmp(s16, si->name, len * sizeof(uint16_t))) {
            return si;
        }
    }
    return NULL;
}

9.3 释放服务

void svcinfo_death(struct binder_state *bs, void *ptr)
{
    struct svcinfo *si = (struct svcinfo* ) ptr;

    if (si->handle) {
        binder_release(bs, si->handle);
        si->handle = 0;
    }
}

10. do_find_service

==> /framework/native/cmds/servicemanager/service_manager.c

uint32_t do_find_service(struct binder_state *bs, const uint16_t *s, size_t len, uid_t uid, pid_t spid)
{
    //查询相应的服务 【见流程9.2】
    struct svcinfo *si = find_svc(s, len); 

    if (!si || !si->handle) {
        return 0;
    }

    if (!si->allow_isolated) {
        uid_t appid = uid % AID_USER;
        //检查该服务是否允许孤立于进程而单独存在
        if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {
            return 0;
        }
    }

    //服务是否满足查询条件
    if (!svc_can_find(s, len, spid)) {  
        return 0;
    }

    return si->handle;
}

查询服务过程比较简单,主要是通过find_svc方法,该方法在流程9.2已经讲解了。

11. 小结

ServiceManager启动流程:

  1. 打开binder驱动,并调用mmap()方法分配128k的内存映射空间:binder_open();
  2. 通知binder驱动使其成为守护进程:binder_become_context_manager();
  3. 验证selinux权限,判断进程是否有权注册或查看指定服务;
  4. 进入循环状态,等待Client端的请求:binder_loop()。

ServiceManger意义:

  1. ServiceManger集中管理系统内的所有服务,通过权限控制进程是否有权注册服务;
  2. ServiceManager能通过字符串名称来查找对应的Service,操作方便;
  3. 当Server进程异常退出,只需告知ServiceManager,每个Client通过查询ServiceManager可获取Server进程的情况,降低所有Client进程直接检测会导致负载过重。