基于Android 6.0的源码剖析, 本文详细地讲解了ServiceManager启动流程
/framework/native/cmds/servicemanager/service_manager.c
/framework/native/cmds/servicemanager/binder.c
入口
ServiceManager是整个Binder IPC通信过程中的守护进程,本身也是一个Binder服务,但并没有采用libbinder中的多线程模型来与Binder驱动通信,而是自行编写了binder.c直接和Binder驱动来通信,并且只有一个循环binder_loop来进行读取和处理事务,这样的好处是简单而高效。 这也跟ServiceManager本身工作相对并不复杂,主要就两个工作:查询和注册服务。 对于Binder IPC通信过程中,其实更多的情形是BpBinder和BBinder之间的通信,比如ActivityManager和ActivityManagerService有大量的通信。
启动Service Manager的入口函数是service_manager.c中的main()方法,代码如下:
==> /framework/native/cmds/servicemanager/service_manager.c
int main(int argc, char **argv)
{
struct binder_state *bs;
//打开binder驱动,申请128k大小的内存空间 【见流程1】
bs = binder_open(128*1024);
if (!bs) {
return -1;
}
//成为上下文管理者 【见流程2】
if (binder_become_context_manager(bs)) {
return -1;
}
selinux_enabled = is_selinux_enabled(); //判断selinux权限问题
sehandle = selinux_android_service_context_handle();
selinux_status_open(true);
if (selinux_enabled > 0) {
if (sehandle == NULL) { //无法获取sehandle
abort();
}
if (getcon(&service_manager_context) != 0) { //无法获取service_manager上下文
abort();
}
}
union selinux_callback cb;
cb.func_audit = audit_callback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
cb.func_log = selinux_log_callback;
selinux_set_callback(SELINUX_CB_LOG, cb);
//进入无限循环,处理client端发来的请求 【见流程5】
binder_loop(bs, svcmgr_handler);
return 0;
}
该过程的时序图如下:
1. binder_open
==> /framework/native/cmds/servicemanager/binder.c
打开binder驱动相关操作
struct binder_state *binder_open(size_t mapsize)
{
struct binder_state *bs;
struct binder_version vers;
bs = malloc(sizeof(*bs));
if (!bs) {
errno = ENOMEM;
return NULL;
}
//通过系统调用陷入内核,打开Binder设备驱动
bs->fd = open("/dev/binder", O_RDWR);
if (bs->fd < 0) {
goto fail_open; // 无法打开binder设备
}
//通过系统调用,ioctl获取binder版本信息
if ((ioctl(bs->fd, BINDER_VERSION, &vers) == -1) ||
(vers.protocol_version != BINDER_CURRENT_PROTOCOL_VERSION)) {
goto fail_open; //内核空间与用户空间的binder不是同一版本
}
bs->mapsize = mapsize;
//通过系统调用,mmap内存映射
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
if (bs->mapped == MAP_FAILED) {
goto fail_map; // binder设备内存无法映射
}
return bs;
fail_map:
close(bs->fd);
fail_open:
free(bs);
return NULL;
}
先调用open()打开binder设备,open()方法经过系统调用,进入Binder驱动,然后调用方法binder_open(),该方法会在Binder驱动层创建一个binder_proc
对象,再将binder_proc
对象赋值给fd->private_data,同时放入全局链表binder_procs
。再通过ioctl()检验当前binder版本与Binder驱动层的版本是否一致。
调用mmap()进行内存映射,同理mmap()方法经过系统调用,对应于Binder驱动层的binder_mmap()方法,该方法会在Binder驱动层创建Binder_buffer
对象,并放入当前binder_proc的proc->buffers
链表。
2. binder_become_context_manager
==> /framework/native/cmds/servicemanager/binder.c
成为上下文的管理者,整个系统中只有一个这样的管理者。
int binder_become_context_manager(struct binder_state *bs)
{
//通过ioctl,传递BINDER_SET_CONTEXT_MGR指令。再调用【流程3】
return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
通过ioctl()方法经过系统调用,对应于Binder驱动层的binder_ioctl()方法,根据参数BINDER_SET_CONTEXT_MGR
,最终调用binder_ioctl_set_ctx_mgr()方法。
3. binder_ioctl_set_ctx_mgr
==> kernel/drivers/android/binder.c
该方法位于binder驱动。
static int binder_ioctl_set_ctx_mgr(struct file *filp)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
kuid_t curr_euid = current_euid();
if (binder_context_mgr_node != NULL) {
ret = -EBUSY;
goto out;
}
if (uid_valid(binder_context_mgr_uid)) {
if (!uid_eq(binder_context_mgr_uid, curr_euid)) {
ret = -EPERM;
goto out;
}
} else {
binder_context_mgr_uid = curr_euid; //设置当前线程euid作为Service Manager的uid
}
//创建ServiceManager实体【流程4】
binder_context_mgr_node = binder_new_node(proc, 0, 0);
if (binder_context_mgr_node == NULL) {
ret = -ENOMEM;
goto out;
}
binder_context_mgr_node->local_weak_refs++;
binder_context_mgr_node->local_strong_refs++;
binder_context_mgr_node->has_strong_ref = 1;
binder_context_mgr_node->has_weak_ref = 1;
out:
return ret;
}
在Binder驱动中定义的静态变量
// service manager所对应的binder_node;
static struct binder_node *binder_context_mgr_node;
// 运行service manager的线程uid
static kuid_t binder_context_mgr_uid = INVALID_UID;
通过binder_new_node()
创建了全局的binder_context_mgr_node
对象,并且增加binder_context_mgr_node的强弱引用各自加1.
4. binder_new_node
==> kernel/drivers/android/binder.c
该方法位于binder驱动。
static struct binder_node *binder_new_node(struct binder_proc *proc,
binder_uintptr_t ptr,
binder_uintptr_t cookie)
{
struct rb_node **p = &proc->nodes.rb_node;
struct rb_node *parent = NULL;
struct binder_node *node;
//首次进来为空
while (*p) {
parent = *p;
node = rb_entry(parent, struct binder_node, rb_node);
if (ptr < node->ptr)
p = &(*p)->rb_left;
else if (ptr > node->ptr)
p = &(*p)->rb_right;
else
return NULL;
}
//给新创建的binder_node 分配内核空间
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL)
return NULL;
binder_stats_created(BINDER_STAT_NODE);
// 将新创建的node对象添加到proc红黑树;
rb_link_node(&node->rb_node, parent, p);
rb_insert_color(&node->rb_node, &proc->nodes);
node->debug_id = ++binder_last_id;
node->proc = proc;
node->ptr = ptr;
node->cookie = cookie;
node->work.type = BINDER_WORK_NODE; //设置binder_work的type
INIT_LIST_HEAD(&node->work.entry);
INIT_LIST_HEAD(&node->async_todo);
return node;
}
在Binder驱动层创建binder_node结构体对象,并将当前binder_proc加入到binder_node
的node->proc
。并创建binder_node的async_todo和binder_work两个队列。
5. binder_loop
==> /framework/native/cmds/servicemanager/binder.c
进入循环读写操作,由main()方法传递过来的参数func指向svcmgr_handler。
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
//将BC_ENTER_LOOPER命令发送给binder驱动,让Service Manager进入循环 【流程6】
binder_write(bs, readbuf, sizeof(uint32_t));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); //进入循环,不断地binder读写过程
if (res < 0) {
break;
}
// 解析binder信息 【流程7】
res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
if (res == 0) {
break;
}
if (res < 0) {
break;
}
}
}
binder_write
通过ioctl()将BC_ENTER_LOOPER命令发送给binder驱动,此时bwr只有write_buffer有数据,进入binder_thread_write()方法。
接下来进入for循环,执行ioctl(),此时bwr只有read_buffer有数据,那么进入binder_thread_read()方法。
6. binder_write
==> /framework/native/cmds/servicemanager/binder.c
int binder_write(struct binder_state *bs, void *data, size_t len)
{
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (uintptr_t) data; //此处data为BC_ENTER_LOOPER
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
return res;
}
根据传递进来的参数,初始化bwr,其中write_size大小为4,write_buffer指向缓冲区的起始地址,其内容为BC_ENTER_LOOPER请求协议号。通过ioctl将bwr数据发送给binder驱动,让Service Manager进入循环。
7. binder_parse
==> /framework/native/cmds/servicemanager/binder.c
解析binder信息,此处参数ptr指向BC_ENTER_LOOPER,func指向svcmgr_handler。
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uintptr_t ptr, size_t size, binder_handler func)
{
int r = 1;
uintptr_t end = ptr + (uintptr_t) size;
while (ptr < end) {
uint32_t cmd = *(uint32_t *) ptr;
ptr += sizeof(uint32_t);
switch(cmd) {
case BR_NOOP: //无操作,退出循环
break;
case BR_TRANSACTION_COMPLETE:
break;
case BR_INCREFS:
case BR_ACQUIRE:
case BR_RELEASE:
case BR_DECREFS:
ptr += sizeof(struct binder_ptr_cookie);
break;
case BR_TRANSACTION: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
// 收到Binder事务 【见流程8】
res = func(bs, txn, &msg, &reply);
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
ptr += sizeof(*txn);
break;
}
case BR_REPLY: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: reply too small!\n");
return -1;
}
binder_dump_txn(txn);
if (bio) {
bio_init_from_txn(bio, txn);
bio = 0;
} else {
/* todo FREE BUFFER */
}
ptr += sizeof(*txn);
r = 0;
break;
}
case BR_DEAD_BINDER: {
struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
ptr += sizeof(binder_uintptr_t);
// binder死亡消息【见流程8】
death->func(bs, death->ptr);
break;
}
case BR_FAILED_REPLY:
r = -1;
break;
case BR_DEAD_REPLY:
r = -1;
break;
default:
return -1;
}
}
return r;
}
接受到的请求最终调用svcmgr_handler。
8. svcmgr_handler
==> /framework/native/cmds/servicemanager/service_manager.c
serviceManager操作的真正处理函数
int svcmgr_handler(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply)
{
struct svcinfo *si;
uint16_t *s;
size_t len;
uint32_t handle;
uint32_t strict_policy;
int allow_isolated;
//判断target是否是Service Manager
if (txn->target.ptr != BINDER_SERVICE_MANAGER)
return -1;
if (txn->code == PING_TRANSACTION)
return 0;
strict_policy = bio_get_uint32(msg);
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
//svcmgr_id是由“android.os.IServiceManager”字符组成的。svcmgr_id与s的内存块的内容是否一致。
if ((len != (sizeof(svcmgr_id) / 2)) ||
memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
return -1;
}
if (sehandle && selinux_status_updated() > 0) {
struct selabel_handle *tmp_sehandle = selinux_android_service_context_handle();
if (tmp_sehandle) {
selabel_close(sehandle);
sehandle = tmp_sehandle;
}
}
switch(txn->code) {
case SVC_MGR_GET_SERVICE: //对应于getService
case SVC_MGR_CHECK_SERVICE: //对应于checkService
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
//根据名称查找相应服务 【见流程9】
handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);
if (!handle)
break;
bio_put_ref(reply, handle);
return 0;
case SVC_MGR_ADD_SERVICE: //对应于addService
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
handle = bio_get_ref(msg);
allow_isolated = bio_get_uint32(msg) ? 1 : 0;
//注册指定服务 【见流程10】
if (do_add_service(bs, s, len, handle, txn->sender_euid,
allow_isolated, txn->sender_pid))
return -1;
break;
case SVC_MGR_LIST_SERVICES: { // 对应于listService
uint32_t n = bio_get_uint32(msg);
if (!svc_can_list(txn->sender_pid)) {
return -1;
}
si = svclist;
while ((n-- > 0) && si)
si = si->next;
if (si) {
bio_put_string16(reply, si->name);
return 0;
}
return -1;
}
default:
return -1;
}
bio_put_uint32(reply, 0);
return 0;
}
9. do_add_service
==> /framework/native/cmds/servicemanager/service_manager.c
int do_add_service(struct binder_state *bs,
const uint16_t *s, size_t len,
uint32_t handle, uid_t uid, int allow_isolated,
pid_t spid)
{
struct svcinfo *si;
if (!handle || (len == 0) || (len > 127))
return -1;
//权限检查【见流程9.1】
if (!svc_can_register(s, len, spid)) {
return -1;
}
//服务检索【见流程9.2】
si = find_svc(s, len);
if (si) {
if (si->handle) {
svcinfo_death(bs, si); //服务已注册时,释放相应的服务
}
si->handle = handle;
} else {
si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
if (!si) { //内存不足,无法分配足够内存
return -1;
}
si->handle = handle;
si->len = len;
memcpy(si->name, s, (len + 1) * sizeof(uint16_t)); //内存拷贝服务信息
si->name[len] = '\0';
si->death.func = (void*) svcinfo_death;
si->death.ptr = si;
si->allow_isolated = allow_isolated;
si->next = svclist; // svclist保存所有已注册的服务
svclist = si;
}
//以BC_ACQUIRE命令,handle为目标的信息,通过ioctl发送给binder驱动
binder_acquire(bs, handle);
//以BC_REQUEST_DEATH_NOTIFICATION命令的信息,通过ioctl发送给binder驱动,主要用于清理内存等收尾工作。
binder_link_to_death(bs, handle, &si->death);
return 0;
}
9.1 检查权限
检查selinux权限是否满足,
static int svc_can_register(const uint16_t *name, size_t name_len, pid_t spid)
{
const char *perm = "add";
return check_mac_perms_from_lookup(spid, perm, str8(name, name_len)) ? 1 : 0;
}
9.2 查询服务
从svclist服务列表中,根据服务名遍历查找是否已经注册。当服务已存在svclist
,则返回相应的服务名,否则返回NULL。
struct svcinfo *find_svc(const uint16_t *s16, size_t len)
{
struct svcinfo *si;
for (si = svclist; si; si = si->next) {
if ((len == si->len) &&
!memcmp(s16, si->name, len * sizeof(uint16_t))) {
return si;
}
}
return NULL;
}
9.3 释放服务
void svcinfo_death(struct binder_state *bs, void *ptr)
{
struct svcinfo *si = (struct svcinfo* ) ptr;
if (si->handle) {
binder_release(bs, si->handle);
si->handle = 0;
}
}
10. do_find_service
==> /framework/native/cmds/servicemanager/service_manager.c
uint32_t do_find_service(struct binder_state *bs, const uint16_t *s, size_t len, uid_t uid, pid_t spid)
{
//查询相应的服务 【见流程9.2】
struct svcinfo *si = find_svc(s, len);
if (!si || !si->handle) {
return 0;
}
if (!si->allow_isolated) {
uid_t appid = uid % AID_USER;
//检查该服务是否允许孤立于进程而单独存在
if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {
return 0;
}
}
//服务是否满足查询条件
if (!svc_can_find(s, len, spid)) {
return 0;
}
return si->handle;
}
查询服务过程比较简单,主要是通过find_svc
方法,该方法在流程9.2已经讲解了。
11. 小结
ServiceManager启动流程:
- 打开binder驱动,并调用mmap()方法分配128k的内存映射空间:binder_open();
- 通知binder驱动使其成为守护进程:binder_become_context_manager();
- 验证selinux权限,判断进程是否有权注册或查看指定服务;
- 进入循环状态,等待Client端的请求:binder_loop()。
ServiceManger意义:
- ServiceManger集中管理系统内的所有服务,通过权限控制进程是否有权注册服务;
- ServiceManager能通过字符串名称来查找对应的Service,操作方便;
- 当Server进程异常退出,只需告知ServiceManager,每个Client通过查询ServiceManager可获取Server进程的情况,降低所有Client进程直接检测会导致负载过重。